20 research outputs found

    Decision support continuum paradigm for cardiovascular disease: Towards personalized predictive models

    Get PDF
    Clinical decision making is a ubiquitous and frequent task physicians make in their daily clinical practice. Conventionally, physicians adopt a cognitive predictive modelling process (i.e. knowledge and experience learnt from past lecture, research, literature, patients, etc.) for anticipating or ascertaining clinical problems based on clinical risk factors that they deemed to be most salient. However, with the inundation of health data and the confounding characteristics of diseases, more effective clinical prediction approaches are required to address these challenges. Approximately a few century ago, the first major transformation of medical practice took place as science-based approaches emerged with compelling results. Now, in the 21st century, new advances in science will once again transform healthcare. Data science has been postulated as an important component in this healthcare reform and has received escalating interests for its potential for ‘personalizing’ medicine. The key advantages of having personalized medicine include, but not limited to, (1) more effective methods for disease prevention, management and treatment, (2) improved accuracy for clinical diagnosis and prognosis, (3) provide patient-oriented personal health plan, and (4) cost containment. In view of the paramount importance of personalized predictive models, this thesis proposes 2 novel learning algorithms (i.e. an immune-inspired algorithm called the Evolutionary Data-Conscious Artificial Immune Recognition System, and a neural-inspired algorithm called the Artificial Neural Cell System for classification) and 3 continuum-based paradigms (i.e. biological, time and age continuum) for enhancing clinical prediction. Cardiovascular disease has been selected as the disease under investigation as it is an epidemic and major health concern in today’s world. We believe that our work has a meaningful and significant impact to the development of future healthcare system and we look forward to the wide adoption of advanced medical technologies by all care centres in the near future.Open Acces

    HPC-enabled GA-SVM feature selection model for large-scale data

    No full text
    With the explosive growth of data to be processed in multiple areas such as bioinformatics, scientific simulation and e-commence, data mining techniques are essential in making proactive, prudent and knowledge-driven decision. Support vector machine (SVM), pioneered by Vapnik has been chosen in this work as the data mining tool due to its excellent generalization performance. In particular, LibSVM has been selected as the software package to perform classification because of its sound performance and popularity. In this paper, an hybrid model for solving the problem of model selection associated with SVM is proposed. This model, HPC-enabled GA-SVM, takes advantage of genetic algorithm (GA) and high performance computing (HPC) technique like parallelism via OpenMP and MPI to conduct the process of model selection. GA was selected due to its capability of performing effective feature selection while HPC techniques have the capability of enhancing the computational performance. Exploration technique like ‘Uniform Design’ (UD) has also been employed to enhance the performance of the proposed model. A speedup of 29.02 times was achievable when compared to the traditional ‘grid’ search algorithm which is an exhaustive search approach without compromising much accuracy. Moreover, a caching policy known as “relaxed” caching policy has been proposed to avoid re-evaluations of previously evaluated combination that are in vicinity. This allows a speedup of 72.83 times when compared to the ‘grid’ search algorithm.Bachelor of Engineering (Computer Science

    Decision support continuum paradigm for cardiovascular disease : towards personalized predictive models

    No full text
    Clinical decision making is a ubiquitous and frequent task physicians make in their daily clinical practice. Conventionally, physicians adopt a cognitive predictive modelling process (i.e. knowledge and experience learnt from past lecture, research, literature, patients, etc.) for anticipating or ascertaining clinical problems based on clinical risk factors that they deemed to be most salient. However, with the inundation of health data and the confounding characteristics of diseases, more effective clinical prediction approaches are required to address these challenges. Approximately a few century ago, the first major transformation of medical practice took place as science-based approaches emerged with compelling results. Now, in the 21st century, new advances in science will once again transform healthcare. Data science has been postulated as an important component in this healthcare reform and has received escalating interests for its potential for ‘personalizing’ medicine. The key advantages of having personalized medicine include, but not limited to, (1) more effective methods for disease prevention, management and treatment, (2) improved accuracy for clinical diagnosis and prognosis, (3) provide patient-oriented personal health plan, and (4) cost containment. In view of the paramount importance of personalized predictive models, this thesis proposes 2 novel learning algorithms (i.e. an immune-inspired algorithm called the Evolutionary Data-Conscious Artificial Immune Recognition System, and a neural-inspired algorithm called the Artificial Neural Cell System for classification) and 3 continuum-based paradigms (i.e. biological, time and age continuum) for enhancing clinical prediction. Cardiovascular disease has been selected as the disease under investigation as it is an epidemic and major health concern in today’s world. We believe that our work has a meaningful and significant impact to the development of future healthcare system and we look forward to the wide adoption of advanced medical technologies by all care centres in the near future.BIOENGINEERIN

    An evolutionary data-conscious artificial immune recognition system

    No full text
    Artificial Immune Recognition System (AIRS) algorithm offers a promising methodology for data classification. It is an immune-inspired supervised learning algorithm that works efficiently and has shown comparable performance with respect to other classifier algorithms. For this reason, it has received escalating interests in recent years. However, the full potential of the algorithm was yet unleashed. We proposed a novel algorithm called the evolutionary data-conscious AIRS (EDC-AIRS) algorithm that accentuates and capitalizes on 3 additional immune mechanisms observed from the natural immune system. These mechanisms are associated to the phenomena exhibited by the antibodies in response to the concentration, location and type of foreign antigens. Bio-mimicking these observations empower EDC-AIRS algorithm with the ability to robustly adapt to the different density, distribution and characteristics exhibited by each data class. This provides competitive advantages for the algorithm to better characterize and learn the underlying pattern of the data. Experiments on four widely used benchmarking datasets demonstrated promising results -- outperforming several state-of-the-art classification algorithms evaluated. This signifies the importance of integrating these immune mechanisms as part of the learning process

    The Effect of Sample Age and Prediction Resolution on Myocardial Infarction Risk Prediction

    No full text
    International audienc
    corecore